

launchpadlib

See https://help.launchpad.net/API/launchpadlib .

	launchpadlib
	Set up

	OAuth authentication

	Anonymous access

	Convenience

	The dictionary request token

	Credentials file errors

	Bad credentials

	Clean up

	Named operations

	Top-level collections

	People and Teams
	People

	Teams

	Hosted files

	Command-line scripts
	RequestTokenApp

	Contributing
	Getting help

	NEWS for launchpadlib
	1.11.0 (2023-01-09)

	1.10.18 (2022-10-28)

	1.10.17 (2022-10-15)

	1.10.16 (2022-01-21)

	1.10.15.1 (2021-10-27)

	1.10.15 (2021-10-27)

	1.10.14 (2021-09-13)

	1.10.13 (2020-04-19)

	1.10.12 (2020-04-17)

	1.10.11 (2020-04-14)

	1.10.10 (2020-02-04)

	1.10.9 (2019-11-28)

	1.10.8 (2019-11-26)

	1.10.7 (2019-05-22)

	1.10.6 (2018-03-08)

	1.10.5 (2017-02-02)

	1.10.4 (2016-07-12)

	1.10.3 (2014-12-05)

	1.10.2 (2012-07-05)

	1.10.1 (2012-07-04)

	1.10.0 (2012-06-19)

	1.9.12 (2011-12-05)

	1.9.11 (2011-11-21)

	1.9.10 (2011-11-21)

	1.9.9 (2011-07-27)

	1.9.8 (2011-02-28)

	1.9.7 (2011-02-15)

	1.9.6 (2011-02-14)

	1.9.5 (2011-02-08)

	1.9.4 (2011-01-18)

	1.9.3 (2011-01-10)

	1.9.2 (2011-01-07)

	1.9.1 (2011-01-06)

	1.9.0 (2011-01-05)

	1.8.0 (2010-11-15)

	1.7.0 (2010-09-23)

	1.6.5 (2010-08-23)

	1.6.4 (2010-08-18)

	1.6.3 (2010-08-12)

	1.6.2 (2010-06-21)

	1.6.1 (2010-06-16)

	1.6.0 (2010-04-07)

	1.5.8 (2010-03-25)

	1.5.7 (2010-03-16)

	1.5.6 (2010-03-04)

	1.5.5

	1.5.4 (2009-12-17)

	1.5.3 (2009-10-22)

	1.5.2 (2009-10-01)

	1.5.1 (2009-07-16)

	1.5.0 (2009-07-09)

	1.0.1 (2009-05-30)

	1.0 (2009-03-24)

launchpadlib

launchpadlib is the standalone Python language bindings to Launchpad’s web
services API. It is officially supported by Canonical, although third party
packages may be available to provide bindings to other programming languages.

Set up

launchpadlib writes to $HOME, so isolate ourselves.

>>> from fixtures import (
... EnvironmentVariable,
... TempDir,
...)
>>> tempdir_fixture = TempDir()
>>> tempdir_fixture.setUp()
>>> home_fixture = EnvironmentVariable('HOME', tempdir_fixture.path)
>>> home_fixture.setUp()

OAuth authentication

The Launchpad API requires user authentication via OAuth, and launchpadlib
provides a high level interface to OAuth for the most common use cases.
Several pieces of information are necessary to complete the OAuth request:

	A consumer key, which is unique to the application using the API

	An access token, which represents the user to the web service

	An access token secret, essentially a password for the token

Consumer keys are hard-baked into the application. They are generated by the
application developer and registered with Launchpad independently of the use
of the application. Since consumer keys are arbitrary, a registered consumer
key can be paired with a secret, but most open source applications will forgo
this since it’s not really a secret anyway.

The access token cannot be provided directly. Instead, the application
generates an unauthenticated request token, exchanging this for an access
token and a secret after obtaining approval to do so from the user. This
permission is typically gained by redirecting the user through their trusted
web browser, then back to the application.

This entire exchange is managed by launchpadlib’s credentials classes.
Credentials can be stored in a file, though the security of this depends on
the implementation of the file object. In the simplest case, the application
will request a new access token every time.

>>> from launchpadlib.credentials import Consumer
>>> consumer = Consumer('launchpad-library')
>>> consumer.key
'launchpad-library'
>>> consumer.secret
''

Salgado has full access to the Launchpad API. Out of band, the application
itself obtains Salgado’s approval to access the Launchpad API on his behalf.
How the application does this is up to the application, provided it conforms
to the OAuth protocol. Once this happens, we have Salgado’s credentials for
accessing Launchpad.

>>> from launchpadlib.credentials import AccessToken
>>> access_token = AccessToken('salgado-change-anything', 'test')

And now these credentials are used to access the root service on Salgado’s
behalf.

>>> from launchpadlib.credentials import Credentials
>>> credentials = Credentials(
... consumer_name=consumer.key, consumer_secret=consumer.secret,
... access_token=access_token)

>>> from launchpadlib.testing.helpers import (
... TestableLaunchpad as Launchpad)
>>> launchpad = Launchpad(credentials=credentials)
>>> list(launchpad.people)
[...]
>>> list(launchpad.bugs)
[...]

If available, the Gnome keyring or KDE wallet will be used to store access
tokens. If a keyring/wallet is not available, the application can store the
credentials on the file system, so that the next time Salgado interacts with
the application, he won’t have to go through the whole OAuth request dance.

>>> import os
>>> import tempfile
>>> fd, path = tempfile.mkstemp('.credentials')
>>> os.close(fd)

Once Salgado’s credentials are obtained for the first time, just set the
appropriate instance variables and use the save() method.

>>> credentials.consumer = consumer
>>> credentials.access_token = access_token
>>> credentials_file = open(path, 'w')
>>> credentials.save(credentials_file)
>>> credentials_file.close()

And the credentials are perfectly valid for accessing Launchpad.

>>> launchpad = Launchpad(credentials=credentials)
>>> list(launchpad.people)
[...]
>>> list(launchpad.bugs)
[...]

The credentials can also be retrieved from the file, so that the OAuth request
dance can be avoided.

>>> credentials = Credentials()
>>> credentials_file = open(path)
>>> credentials.load(credentials_file)
>>> credentials_file.close()
>>> credentials.consumer.key
'launchpad-library'
>>> credentials.consumer.secret
''
>>> credentials.access_token.key
'salgado-change-anything'
>>> credentials.access_token.secret
'test'

These credentials too, are perfectly usable to access Launchpad.

>>> launchpad = Launchpad(credentials=credentials)
>>> list(launchpad.people)
[...]
>>> list(launchpad.bugs)
[...]

The security of the stored credentials is left up to the file-like object.
Here, the application decides to use a dubious encryption algorithm to hide
Salgado’s credentials.

>>> import io
>>> from codecs import EncodedFile
>>> encrypted_file = io.BytesIO()
>>> stream = EncodedFile(encrypted_file, 'rot_13', 'ascii')
>>> credentials.save(stream)
>>> _ = stream.seek(0, 0)
>>> print(''.join(sorted([line.decode() for line in encrypted_file])))
[1]

npprff_frperg = grfg
npprff_gbxra = fnytnqb-punatr-nalguvat
pbafhzre_frperg =
pbafhzre_xrl = ynhapucnq-yvoenel

>>> _ = stream.seek(0)
>>> credentials = Credentials()
>>> credentials.load(stream)
>>> credentials.consumer.key
'launchpad-library'
>>> credentials.consumer.secret
''
>>> credentials.access_token.key
'salgado-change-anything'
>>> credentials.access_token.secret
'test'

Anonymous access

An anonymous access token doesn’t authenticate any particular
user. Using it will give a client read-only access to the public parts
of the Launchpad dataset.

>>> from launchpadlib.credentials import AnonymousAccessToken
>>> anonymous_token = AnonymousAccessToken()

>>> from launchpadlib.credentials import Credentials
>>> credentials = Credentials(
... consumer_name="a consumer", access_token=anonymous_token)
>>> launchpad = Launchpad(credentials=credentials)

>>> salgado = launchpad.people['salgado']
>>> print(salgado.display_name)
Guilherme Salgado

An anonymous client can’t modify the dataset, or read any data that’s
permission-controlled or scoped to a particular user.

>>> launchpad.me
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

>>> salgado.display_name = "This won't work."
>>> salgado.lp_save()
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

Convenience

When you want anonymous access, a convenience method is available for
setting up a web service connection in one function call. All you have
to provide is the consumer name.

>>> launchpad = Launchpad.login_anonymously(
... 'launchpad-library', service_root="test_dev")
>>> list(launchpad.people)
[...]

>>> launchpad.me
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

Otherwise, the application should obtain authorization from the user
and get a new set of credentials directly from
Launchpad.

Unfortunately, we can’t test this entire process because it requires
opening up a web browser, but we can test the first step, which is to
get a request token.

>>> import launchpadlib.credentials
>>> credentials = Credentials('consumer')

>>> authorization_url = credentials.get_request_token(
... context='firefox', web_root='test_dev')
>>> print(authorization_url)
http://launchpad.test:8085/+authorize-token?oauth_token=...&lp.context=firefox

We use ‘test_dev’ as a shorthand for the root URL of the Launchpad
installation. It’s defined in the ‘uris’ module as
‘http://launchpad.test:8085/’, and the launchpadlib code knows how to
dereference it before using it as a URL.

Information about the request token is kept in the _request_token
attribute of the Credentials object.

>>> credentials._request_token.key is not None
True
>>> credentials._request_token.secret is not None
True
>>> print(credentials._request_token.context)
firefox

Now the user must authorize that token, and this is the part we can’t
test–it requires opening a web browser. Once the token is authorized
on the server side, we can call exchange_request_token_for_access_token()
on our Credentials object, which will then be ready to use.

The dictionary request token

By default, get_request_token returns the URL that the user needs to
use when granting access to the token. But you can specify a different
token_format and get a dictionary instead.

>>> credentials = Credentials('consumer')
>>> dictionary = credentials.get_request_token(
... context='firefox', web_root='test_dev',
... token_format=Credentials.DICT_TOKEN_FORMAT)

The dictionary has useful information about the token and about the
levels of authentication Launchpad offers.

>>> for param in sorted(dictionary.keys()):
... print(param)
access_levels
lp.context
oauth_token
oauth_token_consumer
oauth_token_secret

The _request_token attribute of the Credentials object has the same
fields set as if you had asked for the default URI token format.

>>> credentials._request_token.key is not None
True
>>> credentials._request_token.secret is not None
True
>>> print(credentials._request_token.context)
firefox

Credentials file errors

If the credentials file is empty, loading it raises an exception.

>>> credentials = Credentials()
>>> credentials.load(io.StringIO())
Traceback (most recent call last):
...
lazr.restfulclient.errors.CredentialsFileError: No configuration for
version 1

It is an error to save a credentials file when no consumer or access token is
available.

>>> credentials.consumer = None
>>> credentials.save(io.StringIO())
Traceback (most recent call last):
...
lazr.restfulclient.errors.CredentialsFileError: No consumer

>>> credentials.consumer = consumer
>>> credentials.access_token = None
>>> credentials.save(io.StringIO())
Traceback (most recent call last):
...
lazr.restfulclient.errors.CredentialsFileError: No access token

The credentials file is not intended to be edited, but because it’s human
readable, that’s of course possible. If the credentials file gets corrupted,
an error is raised.

>>> credentials_file = io.StringIO("""\
... [1]
... #consumer_key: aardvark
... consumer_secret: badger
... access_token: caribou
... access_secret: dingo
... """)
>>> credentials.load(credentials_file)
Traceback (most recent call last):
...
configparser.NoOptionError: No option 'consumer_key' in section: '1'

>>> credentials_file = io.StringIO("""\
... [1]
... consumer_key: aardvark
... #consumer_secret: badger
... access_token: caribou
... access_secret: dingo
... """)
>>> credentials.load(credentials_file)
Traceback (most recent call last):
...
configparser.NoOptionError: No option 'consumer_secret' in section: '1'

>>> credentials_file = io.StringIO("""\
... [1]
... consumer_key: aardvark
... consumer_secret: badger
... #access_token: caribou
... access_secret: dingo
... """)
>>> credentials.load(credentials_file)
Traceback (most recent call last):
...
configparser.NoOptionError: No option 'access_token' in section: '1'

>>> credentials_file = io.StringIO("""\
... [1]
... consumer_key: aardvark
... consumer_secret: badger
... access_token: caribou
... #access_secret: dingo
... """)
>>> credentials.load(credentials_file)
Traceback (most recent call last):
...
configparser.NoOptionError: No option 'access_secret' in section: '1'

Bad credentials

The application is not allowed to access Launchpad with a bad access token.

>>> access_token = AccessToken('bad', 'no-secret')
>>> credentials = Credentials(
... consumer_name=consumer.key, consumer_secret=consumer.secret,
... access_token=access_token)
>>> launchpad = Launchpad(credentials=credentials)
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

The application is not allowed to access Launchpad with a consumer
name that doesn’t match the credentials.

>>> access_token = AccessToken('salgado-change-anything', 'test')
>>> credentials = Credentials(
... consumer_name='not-the-launchpad-library',
... access_token=access_token)
>>> launchpad = Launchpad(credentials=credentials)
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

The application is not allowed to access Launchpad with a bad access secret.

>>> access_token = AccessToken('hgm2VK35vXD6rLg5pxWw', 'bad-secret')
>>> credentials = Credentials(
... consumer_name=consumer.key, consumer_secret=consumer.secret,
... access_token=access_token)
>>> launchpad = Launchpad(credentials=credentials)
Traceback (most recent call last):
...
lazr.restfulclient.errors.Unauthorized: HTTP Error 401: Unauthorized
...

Clean up

>>> os.remove(path)
>>> home_fixture.cleanUp()
>>> tempdir_fixture.cleanUp()

Named operations

launchpadlib can transparently determine the size of the list even
when the size is not directly provided, but is only available through
a link.

>>> from launchpadlib.testing.helpers import salgado_with_full_permissions
>>> launchpad = salgado_with_full_permissions.login(version="devel")

>>> results = launchpad.people.find(text='s')
>>> 'total_size' in results._wadl_resource.representation.keys()
False
>>> 'total_size_link' in results._wadl_resource.representation.keys()
True
>>> len(results) > 1
True

Of course, launchpadlib can also determine the size when the size _is_
directly provided.

>>> results = launchpad.people.find(text='salgado')
>>> 'total_size' in results._wadl_resource.representation.keys()
True
>>> len(results) == 1
True

Top-level collections

The launchpad web service’s top-level collections provide access to
Launchpad-wide objects like projects and people.

>>> import httplib2
>>> httplib2.debuglevel = 1

>>> from launchpadlib.testing.helpers import salgado_with_full_permissions
>>> launchpad = salgado_with_full_permissions.login()
send: ...
...

It’s possible to do key-based lookups on the top-level
collections. The bug collection does lookups by bug ID.

>>> bug = launchpad.bugs[1]
send: b'GET /.../bugs/1 ...'
...

To avoid triggering an HTTP request when simply looking up an object,
you can use a different syntax:

>>> bug = launchpad.bugs(1)

The HTTP request will happen when you need information that can only
be obtained from the web service.

>>> print(bug.id)
send: b'GET /.../bugs/1 ...'
...
1

Let’s look at some more collections. The project collection does
lookups by project name.

>>> project = launchpad.projects('firefox')
>>> print(project.name)
send: b'GET /.../firefox ...'
...
firefox

The project group collection does lookups by project group name.

>>> group = launchpad.project_groups('gnome')
>>> print(group.name)
send: b'GET /.../gnome ...'
...
gnome

The distribution collection does lookups by distribution name.

>>> distribution = launchpad.distributions('ubuntu')
>>> print(distribution.name)
send: b'GET /.../ubuntu ...'
...
ubuntu

The person collection does lookups by a person’s Launchpad
name.

>>> person = launchpad.people('salgado')
>>> print(person.name)
send: b'GET /.../~salgado ...'
...
salgado

>>> team = launchpad.people('rosetta-admins')
>>> print(team.name)
send: b'GET /1.0/~rosetta-admins ...'
...
rosetta-admins

How does launchpadlib know that ‘salgado’ is a person and
‘rosetta-admins’ is a team?

>>> print(person.resource_type_link)
http://.../1.0/#person
>>> 'default_membership_period' in person.lp_attributes
False

>>> print(team.resource_type_link)
http://.../1.0/#team
>>> 'default_membership_period' in team.lp_attributes
True

The truth is that it doesn’t know, not before making that HTTP
request. Until an HTTP request is made, launchpadlib assumes
everything in launchpad.people[] is a team (since a team has strictly
more capabilities than a person).

>>> person2 = launchpad.people('salgado')
>>> 'default_membership_period' in person2.lp_attributes
True

But accessing any attribute of an object–even trying to see what kind
of object ‘salgado’ is–will trigger the HTTP request that will
determine that ‘salgado’ is actually a person.

>>> print(person2.resource_type_link)
send: b'GET /.../~salgado ...'
...
http://.../1.0/#person

>>> 'default_membership_period' in person2.lp_attributes
False

Accessing an attribute of an object that might be a team will trigger
the HTTP request, and then cause an error if the object turns out not
to be a team.

>>> person3 = launchpad.people('salgado')
>>> person3.default_membership_period
Traceback (most recent call last):
AttributeError: ...api.launchpad.../~salgado object has no attribute 'default_membership_period'

Cleanup.

>>> httplib2.debuglevel = 0

People and Teams

The Launchpad web service, like Launchpad itself, exposes a unified
interface to people and teams. In other words, people and teams
occupy the same namespace. You treat people and teams as the same
type of object, and need to inspect the object to know whether you’re
dealing with a person or a team.

People

You can access Launchpad people through the web service interface.
The list of people is available from the service root.

>>> from launchpadlib.testing.helpers import salgado_with_full_permissions
>>> launchpad = salgado_with_full_permissions.login()
>>> people = launchpad.people

The list of people is not fetched until you actually use data.

>>> print(people._wadl_resource.representation)
None

>>> len(people)
4

>>> print(people._wadl_resource.representation)
{...}

The ‘me’ attribute is also available from the service root. It’s a
quick way to get a reference to your own user account.

>>> me = launchpad.me
>>> print(me.name)
salgado

You can find a person by name.

>>> salgado = launchpad.people['salgado']
>>> print(salgado.name)
salgado
>>> print(salgado.display_name)
Guilherme Salgado
>>> salgado.is_team
False

But if no person by that name is registered, you get the expected KeyError.

>>> launchpad.people['not-a-registered-person']
Traceback (most recent call last):
...
KeyError: 'not-a-registered-person'

It’s not possible to slice a single person from the top-level
collection of people. launchpadlib will try to use the value you pass
in as a person’s name, which will almost always fail.

>>> launchpad.people[1]
Traceback (most recent call last):
...
KeyError: 1

You can find a person by email.

>>> email = salgado.preferred_email_address.email
>>> salgado = launchpad.people.getByEmail(email=email)
>>> print(salgado.name)
salgado

Besides a name and a display name, a person has many other attributes that you
can read.

XXX 05-Jun-2008 BarryWarsaw Some of these attributes are links to further
collections and are not yet tested. Tests will be added in future
branches.

>>> salgado.karma
0
>>> print(salgado.homepage_content)
None
>>> #salgado.mugshot
>>> #salgado.languages
>>> salgado.hide_email_addresses
False
>>> salgado.date_created
datetime.datetime(2005, 6, 6, 8, 59, 51, 596025, ...)
>>> print(salgado.time_zone)
UTC
>>> salgado.is_valid
True
>>> #salgado.wiki_names
>>> #salgado.irc_nicknames
>>> #salgado.jabber_ids
>>> #salgado.team_memberships
>>> #salgado.open_membership_invitations
>>> #salgado.teams_participated_in
>>> #salgado.teams_indirectly_participated_in
>>> #salgado.confirmed_email_addresses
>>> #salgado.preferred_email_address
>>> print(salgado.mailing_list_auto_subscribe_policy)
Ask me when I join a team
>>> print(salgado.visibility)
Public

Teams

You also access teams using the same interface.

>>> team = launchpad.people['ubuntu-team']
>>> print(team.name)
ubuntu-team
>>> print(team.display_name)
Ubuntu Team
>>> team.is_team
True

Regular people have team attributes, but they’re not used.

>>> print(salgado.team_owner)
None

You can find out how a person has membership in a team.

XXX: salgado, 2008-08-01: Commented because method has been Unexported;
it should be re-enabled after the operation is exported again.
>>> path = salgado.findPathToTeam(
… team=launchpad.people[‘mailing-list-experts’])
>>> [team.name for team in path]
[u’admins’, u’mailing-list-experts’]

You can create a new team through the web interface. The simplest case of
this requires only the new team’s name, owner and display name.

>>> launchpad.people['bassists']
Traceback (most recent call last):
...
KeyError: 'bassists'

>>> bassists = launchpad.people.newTeam(
... name='bassists', display_name='Awesome Rock Bass Players')
>>> print(bassists.name)
bassists
>>> print(bassists.display_name)
Awesome Rock Bass Players
>>> bassists.is_team
True

And of course, that team is now accessible directly.

>>> bassists = launchpad.people['bassists']
>>> print(bassists.name)
bassists
>>> print(bassists.display_name)
Awesome Rock Bass Players

You cannot create the same team twice.

>>> launchpad.people.newTeam(name='bassists', display_name='Bass Gods')
Traceback (most recent call last):
...
lazr.restfulclient.errors.BadRequest: HTTP Error 400: Bad Request
...

Actually, the exception contains other useful information.

>>> from launchpadlib.errors import HTTPError
>>> try:
... launchpad.people.newTeam(
... name='bassists', display_name='Bass Gods')
... except HTTPError as e:
... error = e
>>> error.response['status']
'400'
>>> print(error.content.decode())
name: bassists is already in use by another person or team.

Besides a name and a display name, a team has many other attributes that you
can read.

>>> bassists.karma
0
>>> print(bassists.homepage_content)
None
>>> bassists.hide_email_addresses
False
>>> bassists.date_created
datetime.datetime(...)
>>> print(bassists.time_zone)
UTC
>>> bassists.is_valid
True
>>> #bassists.team_memberships
>>> #bassists.open_membership_invitations
>>> #bassists.teams_participated_in
>>> #bassists.teams_indirectly_participated_in
>>> #bassists.confirmed_email_addresses
>>> #bassists.team_owner
>>> #bassists.preferred_email_address
>>> #bassists.members
>>> #bassists.admins
>>> #bassists.participants
>>> #bassists.deactivated_members
>>> #bassists.expired_members
>>> #bassists.invited_members
>>> #bassists.member_memberships
>>> #bassists.proposed_members
>>> print(bassists.visibility)
Public
>>> print(bassists.team_description)
None
>>> print(bassists.subscription_policy)
Moderated Team
>>> print(bassists.renewal_policy)
invite them to apply for renewal
>>> print(bassists.default_membership_period)
None
>>> print(bassists.default_renewal_period)
None

Hosted files

The Launchpad web service sets restrictions on what kinds of documents
can be written to a particular file. This test shows what happens when
you try to upload a non-image for a field that expects an image.

>>> from launchpadlib.testing.helpers import salgado_with_full_permissions
>>> launchpad = salgado_with_full_permissions.login()
>>> from launchpadlib.errors import HTTPError

>>> mugshot = launchpad.me.mugshot
>>> file_handle = mugshot.open("w", "image/png", "nonimage.txt")
>>> file_handle.content_type
'image/png'
>>> file_handle.filename
'nonimage.txt'
>>> file_handle.write(b"Not an image.")
>>> try:
... file_handle.close()
... except HTTPError as e:
... print(e.content.decode())

The file uploaded was not recognized as an image; please
check it and retry.

Of course, uploading an image works fine.

>>> import os
>>> def load_image(filename):
... image_file = os.path.join(
... os.path.dirname(__file__), 'files', filename)
... with open(image_file, "rb") as f:
... return f.read()
>>> image = load_image("mugshot.png")
>>> len(image)
2260

>>> file_handle = mugshot.open("w", "image/png", "a-mugshot.png")
>>> file_handle.write(image)
>>> file_handle.close()

== Error handling ==

The server may set restrictions on what kinds of documents can be
written to a particular file.

>>> file_handle = mugshot.open("w", "image/png", "nonimage.txt")
>>> file_handle.content_type
'image/png'
>>> file_handle.filename
'nonimage.txt'
>>> file_handle.write(b"Not an image.")
>>> file_handle.close()
Traceback (most recent call last):
...
lazr.restfulclient.errors.BadRequest: HTTP Error 400: Bad Request
...

== Caching ==

Hosted file resources implement the normal server-side caching
mechanism.

>>> file_handle = mugshot.open("w", "image/png", "image.png")
>>> file_handle.write(image)
>>> file_handle.close()

>>> import httplib2
>>> httplib2.debuglevel = 1
>>> launchpad = salgado_with_full_permissions.login()
send: ...
>>> mugshot = launchpad.me.mugshot
send: ...

The first request for a file retrieves the file from the server.

>>> len(mugshot.open().read())
send: ...
reply: 'HTTP/1.1 303 See Other...
reply: 'HTTP/1.1 200 OK...
2260

The second request retrieves the file from the cache. After receiving
the 303 request with its Location header, no further HTTP requests are
issued because the Librarian’s Cache-Control: headers tell us we
already have a fresh copy.

>>> len(mugshot.open().read())
send: ...
reply: 'HTTP/1.1 303 See Other...
header: Location...
2260

Finally, some cleanup code that deletes the mugshot.

>>> mugshot.delete()
send: b'DELETE...
reply: 'HTTP/1.1 200...

>>> httplib2.debuglevel = 0

Command-line scripts

Launchpad includes one command-line script to make Launchpad
integration easier for third-party libraries that aren’t written in
Python.

This file tests the workflow underlying the command-line script as
best it can.

RequestTokenApp

This class is called by the command-line script
launchpad-request-token. It creates a request token on a given
Launchpad installation, and returns a JSON description of the request
token and the available access levels.

>>> import json
>>> from launchpadlib.apps import RequestTokenApp

>>> web_root = "http://launchpad.test:8085/"
>>> consumer_name = "consumer"
>>> token_app = RequestTokenApp(web_root, consumer_name, "context")
>>> token_json = json.loads(token_app.run())

>>> for param in sorted(token_json.keys()):
... print(param)
access_levels
lp.context
oauth_token
oauth_token_consumer
oauth_token_secret

>>> print(token_json['lp.context'])
context

>>> print(token_json['oauth_token_consumer'])
consumer

Contributing

To run this project’s tests, use tox [https://tox.readthedocs.io/en/latest/].

To update the project’s documentation [https://launchpadlib.readthedocs.io/en/latest/] you need to trigger a manual
build on the project’s dashboard on https://readthedocs.org.

Getting help

If you find bugs in this package, you can report them here:

https://launchpad.net/launchpadlib

If you want to discuss this package, join the team and mailing list here:

https://launchpad.net/~lazr-developers

or send a message to:

lazr-developers@lists.launchpad.net

NEWS for launchpadlib

1.11.0 (2023-01-09)

	Move the keyring dependency to a new keyring extra.

	Support setting fake methods that return None on instances of
launchpadlib.testing.launchpad.FakeLaunchpad.

	Allow setting FakeLaunchpad sample data with attributes that are links
to other entries or collections.

	Fix handling of methods with no response representation in
FakeLaunchpad.

1.10.18 (2022-10-28)

	Declare support for Python 3.11.

1.10.17 (2022-10-15)

	Generate coverage report.

	Use pytest as test runner.

	Fix doctests for Python 3.

1.10.16 (2022-01-21)

	Add pre-commit configuration.

	Remove some obsolete scripts from contrib/.

	Apply black code formatter.

	Publish documentation on Read the Docs.

	Remove remnants of simplejson in favour of json.

	Apply inclusive naming via the woke pre-commit hook.

	Optionally get credentials file from LP_CREDENTIALS_FILE environment
variable. [bug=737473]

1.10.15.1 (2021-10-27)

	Re-release without stray files in sdist.

1.10.15 (2021-10-27)

	Move dependencies of launchpadlib.testing to a new testing extra.
[bug=1019700]

	Stop excluding MANIFEST.in from the sdist.

	Declare support for Python 3.9 and 3.10.

	Move code hosting to git (https://code.launchpad.net/launchpadlib).

1.10.14 (2021-09-13)

	Adjust versioning strategy to avoid importing pkg_resources, which is slow
in large environments.

1.10.13 (2020-04-19)

	Fix test runs under sudo.

1.10.12 (2020-04-17)

	Postpone keyring.errors import in the same way that we postpone importing
keyring itself.

1.10.11 (2020-04-14)

	Don’t store credentials or open a browser window when running under sudo.
[bug=1825014,1862948]

	Fall back to in-memory credentials store if no keyring backend is
available. [bug=1864204]

1.10.10 (2020-02-04)

	Fix AccessToken.from_string crash on Python 3.8. [bug=1861873]

1.10.9 (2019-11-28)

	Explicitly install version.txt; launchpadlib requires it.

1.10.8 (2019-11-26)

	Squash a deprecation warning on Python >= 3.7 in
launchpadlib.testing.launchpad.

	Switch from buildout to tox.

	Weaken hosted-files test slightly to avoid problems with zope.publisher >=
4.2.2.

1.10.7 (2019-05-22)

	Change ‘dev’ URLs from launchpad.dev to launchpad.test.

1.10.6 (2018-03-08)

	Fix saving of credentials in python3 with gnome-keyring. [bug=1685962]

1.10.5 (2017-02-02)

	Fix AccessToken.from_string crash on Python 3. [bug=1471927]

	Fix fallback if authorizing a token with a browser raises webbrowser.Error.

	Stop introduction.txt doctest from writing to $HOME.

1.10.4 (2016-07-12)

	Fix _bad_oauth_token crash on Python 3. [bug=1471894]

	Time out make_end_user_authorize_token after 15 minutes.

	Ignore PendingDeprecationWarning from lazr.restfulclient. [bug=1473577]

	Ask forgiveness rather than permission when creating cache directories.

	Fix browser token authorization on OS X. [bug=1516080]

1.10.3 (2014-12-05)

	Port to Python3.

	Detect proxies from the environment by default.

1.10.2 (2012-07-05)

	Typo in the doctest fix, discovered when trying to integrate with launchpad
itself. [bug=1020667]

1.10.1 (2012-07-04)

	Fix a doctest in introduction.txt so that the test suite runs with
python-2.7 (note the doctests only run when running integrated with
launchpad’s test suite itself). [bug=1020667]

1.10.0 (2012-06-19)

	Add environment variable, LP_DISABLE_SSL_CERTIFICATE_VALIDATION, to
disable SSL certificate checks. Most useful when testing against
development servers.

1.9.12 (2011-12-05)

	Move keyring base64 encoding to KeyringCredential and be more
defensive about decoding. [bug=900307]

1.9.11 (2011-11-21)

	1.9.10 was a bad release due to incomplete NEWS entries.

	Add fake Launchpad web service for unit test.

	Improve HACKING documentation.

	Improve launchpadlib directory discovery on Windows.

	Added script to delete spurious bugtasks or split a bugtask from a bug.

	Properly handle Unicode passwords if returned by the keyring.

	Base 64 encode serialized credentials before putting in keyring/wallet.

1.9.10 (2011-11-21)

	Base 64 encode serialized credentials before putting in keyring/wallet.

1.9.9 (2011-07-27)

	Fix a failing test for lazr.restfulclient 0.12.0.

1.9.8 (2011-02-28)

	Detect the error Launchpad sends when it doesn’t recognize an access
token, and get a new token.

1.9.7 (2011-02-15)

	Slightly tweaked the behavior of EDGE_SERVICE_ROOT, and improved tests.

1.9.6 (2011-02-14)

	Added EDGE_SERVICE_ROOT and the ‘edge’ alias back, though they both
operate on production behind the scenes. Using the ‘edge’ alias will
cause a deprecation warning.

1.9.5 (2011-02-08)

	Fixed a bug that prevented the deprecated get_token_and_login code
from working, and that required that users of get_token_and_login
get a new token on every usage.

1.9.4 (2011-01-18)

	Removed references to the ‘edge’ service root, which is being phased out.

	Fixed a minor bug in the upload_release_tarball contrib script which
was causing tarballs to be uploaded with the wrong media type.

	The XSLT stylesheet for converting the Launchpad WADL into HTML
documentation has been moved back into Launchpad.

1.9.3 (2011-01-10)

	The keyring package import is now delayed until the keyring needs to be
accessed. This reduces launchapdlib users’ exposure to unintended side
effects of importing keyring (KWallet authorization dialogs and the
registration of a SIGCHLD handler).

1.9.2 (2011-01-07)

	Added a missing import.

1.9.1 (2011-01-06)

	Corrected a test failure.

1.9.0 (2011-01-05)

	When an authorization token expires or becomes invalid, attempt to
acquire a new one, even in the middle of a session, rather than
crashing.

	The HTML generated by wadl-to-refhtml.xsl now validates.

	Most of the helper login methods have been deprecated. There are now
only two helper methods:

	Launchpad.login_anonymously, for anonymous credential-free access.

	Launchpad.login_with, for programs that need a credential.

1.8.0 (2010-11-15)

	Store authorization tokens in the Gnome keyring or KDE wallet, when
available. The credentials_file parameter of Launchpad.login_with() is now
ignored.

	By default, Launchpad.login_with() now asks Launchpad for
desktop-wide integration. This removes the need for each individual
application to get its own OAuth token.

1.7.0 (2010-09-23)

	Removed “fake Launchpad browser” code that didn’t work and was
misleading developers.

	Added support for http://qastaging.launchpad.net by adding
astaging to the uris.

1.6.5 (2010-08-23)

	Make launchpadlib compatible with the latest lazr.restfulclient.

1.6.4 (2010-08-18)

	Test fixes.

1.6.3 (2010-08-12)

	Instead of making the end-user hit Enter after authorizing an
application to access their Launchpad account, launchpadlib will
automatically poll Launchpad until the user makes a decision.

	launchpadlib now raises a more helpful exception when the end-user
explicitly denies access to a launchpadlib application.

	Improved the XSLT stylesheet to reflect Launchpad’s more complex
top-level structure. [bug=286941]

	Test fixes. [bug=488448,616055]

1.6.2 (2010-06-21)

	Extended the optimization from version 1.6.1 to apply to Launchpad’s
top-level collection of people.

1.6.1 (2010-06-16)

	Added an optimization that lets launchpadlib avoid making an HTTP
request in some situations.

1.6.0 (2010-04-07)

	Fixed a test to work against the latest version of Launchpad.

1.5.8 (2010-03-25)

	Use version 1.0 of the Launchpad web service by default.

1.5.7 (2010-03-16)

	Send a Referer header whenever making requests to the Launchpad
website (as opposed to the web service) to avoid falling afoul of
new cross-site-request-forgery countermeasures.

1.5.6 (2010-03-04)

	Fixed a minor bug when using login_with() to access a version of the
Launchpad web service other than the default.

	Added a check to catch old client code that would cause newer
versions of launchpadlib to make nonsensical requests to
https://api.launchpad.dev/beta/beta/, and raise a helpful exception
telling the developer how to fix it.

1.5.5

	Added the ability to access different versions of the Launchpad web
service.

1.5.4 (2009-12-17)

	Made it easy to get anonymous access to a Launchpad instance.

	Made it easy to plug in different clients that take the user’s
Launchpad login and password for purposes of authorizing a request
token. The most secure technique is still the default: to open the
user’s web browser to the appropriate Launchpad page.

	Introduced a command-line script bin/launchpad-credentials-console,
which takes the user’s Launchpad login and password, and authorizes
a request token on their behalf.

	Introduced a command-line script bin/launchpad-request-token, which
creates a request token on any Launchpad installation and dumps the
JSON description of that token to standard output.

	Shorthand service names like ‘edge’ should now be respected
everywhere in launchpadlib.

1.5.3 (2009-10-22)

	Moved some more code from launchpadlib into the more generic
lazr.restfulclient.

1.5.2 (2009-10-01)

	Added a number of new sample scripts from elsewhere.

	Added a reference to the production Launchpad instance.

	Made it easier to specify a Launchpad instance to run against.

1.5.1 (2009-07-16)

	Added a sample script for uploading a release tarball to Launchpad.

1.5.0 (2009-07-09)

	Most of launchpadlib’s code has been moved to the generic
lazr.restfulclient library. launchpadlib now contains only code
specific to Launchpad. There should be no changes in functionality.

	Moved bootstrap.py into the top-level directory. Having it in a
subdirectory with a top-level symlink was breaking installation on
Windows.

	The notice to the end-user (that we’re opening their web
browser) is now better formatted.

1.0.1 (2009-05-30)

	Correct tests for new launchpad cache behavior in librarian

	Remove build dependency on setuptools_bzr because it was causing bzr to be
downloaded during installation of the package, which was unnecessary and
annoying.

1.0 (2009-03-24)

	Initial release on PyPI

Index

 nav.xhtml

 Table of Contents

 		
 launchpadlib

 		
 launchpadlib

 		
 Set up

 		
 OAuth authentication

 		
 Anonymous access

 		
 Convenience

 		
 The dictionary request token

 		
 Credentials file errors

 		
 Bad credentials

 		
 Clean up

 		
 Named operations

 		
 Top-level collections

 		
 People and Teams

 		
 People

 		
 Teams

 		
 Hosted files

 		
 Command-line scripts

 		
 RequestTokenApp

 		
 Contributing

 		
 Getting help

 		
 NEWS for launchpadlib

 		
 1.11.0 (2023-01-09)

 		
 1.10.18 (2022-10-28)

 		
 1.10.17 (2022-10-15)

 		
 1.10.16 (2022-01-21)

 		
 1.10.15.1 (2021-10-27)

 		
 1.10.15 (2021-10-27)

 		
 1.10.14 (2021-09-13)

 		
 1.10.13 (2020-04-19)

 		
 1.10.12 (2020-04-17)

 		
 1.10.11 (2020-04-14)

 		
 1.10.10 (2020-02-04)

 		
 1.10.9 (2019-11-28)

 		
 1.10.8 (2019-11-26)

 		
 1.10.7 (2019-05-22)

 		
 1.10.6 (2018-03-08)

 		
 1.10.5 (2017-02-02)

 		
 1.10.4 (2016-07-12)

 		
 1.10.3 (2014-12-05)

 		
 1.10.2 (2012-07-05)

 		
 1.10.1 (2012-07-04)

 		
 1.10.0 (2012-06-19)

 		
 1.9.12 (2011-12-05)

 		
 1.9.11 (2011-11-21)

 		
 1.9.10 (2011-11-21)

 		
 1.9.9 (2011-07-27)

 		
 1.9.8 (2011-02-28)

 		
 1.9.7 (2011-02-15)

 		
 1.9.6 (2011-02-14)

 		
 1.9.5 (2011-02-08)

 		
 1.9.4 (2011-01-18)

 		
 1.9.3 (2011-01-10)

 		
 1.9.2 (2011-01-07)

 		
 1.9.1 (2011-01-06)

 		
 1.9.0 (2011-01-05)

 		
 1.8.0 (2010-11-15)

 		
 1.7.0 (2010-09-23)

 		
 1.6.5 (2010-08-23)

 		
 1.6.4 (2010-08-18)

 		
 1.6.3 (2010-08-12)

 		
 1.6.2 (2010-06-21)

 		
 1.6.1 (2010-06-16)

 		
 1.6.0 (2010-04-07)

 		
 1.5.8 (2010-03-25)

 		
 1.5.7 (2010-03-16)

 		
 1.5.6 (2010-03-04)

 		
 1.5.5

 		
 1.5.4 (2009-12-17)

 		
 1.5.3 (2009-10-22)

 		
 1.5.2 (2009-10-01)

 		
 1.5.1 (2009-07-16)

 		
 1.5.0 (2009-07-09)

 		
 1.0.1 (2009-05-30)

 		
 1.0 (2009-03-24)

_static/file.png

_static/minus.png

_static/plus.png

